Django uses request and response objects to pass state through the system.
When a page is requested, Django creates an
HttpRequest
object that
contains metadata about the request. Then Django loads the appropriate view,
passing the
HttpRequest
as the first argument to the view function. Each
view is responsible for returning an
HttpResponse
object.
We’ve used these objects often throughout the book; this appendix explains the
complete APIs for
HttpRequest
and
HttpResponse
objects.
HttpRequest
represents a single HTTP request from some user-agent.
Much of the important information about the request is available as attributes
on the
HttpRequest
instance (see Table G-1). All attributes except
session
should be considered read-only.
Attribute |
Description |
---|---|
|
A string representing the full path to the requested
page, not including the domain – for example,
|
|
A string representing the HTTP method used in the request. This is guaranteed to be uppercase. For example: if request.method == 'GET':
do_something()
elif request.method == 'POST':
do_something_else()
|
|
A string representing the current encoding used to
decode form submission data (or
You can write to this attribute to change the encoding
used when accessing the form data. Any subsequent
attribute accesses (such as reading from
|
|
A dictionary-like object containing all given HTTP GET
parameters. See the upcoming
|
|
A dictionary-like object containing all given HTTP POST
parameters. See the upcoming
It’s possible that a request can come in via POST with
an empty
Note:
|
|
For convenience, a dictionary-like object that searches
For example, if
It’s strongly suggested that you use
|
|
A standard Python dictionary containing all cookies. Keys and values are strings. See Chapter 14 for more on using cookies. |
|
A dictionary-like object that maps filenames to
|
|
A standard Python dictionary containing all available HTTP headers. Available headers depend on the client and server, but here are some examples:
Any HTTP headers are available in
|
|
A
if request.user.is_authenticated():
# Do something for logged-in users.
else:
# Do something for anonymous users.
For the complete details of authentication and users, see Chapter 14. |
|
A readable and writable, dictionary-like object that represents the current session. This is available only if your Django installation has session support activated. See Chapter 14. |
|
The raw HTTP POST data. This is useful for advanced processing. |
Request objects also have a few useful methods, as shown in Table G-2.
Method |
Description |
---|---|
|
Returns the GET/POST value for the given key,
checking POST first, and then GET. Raises
This lets you use dictionary-accessing syntax on
an
For example,
|
|
Returns
|
|
Returns the originating host of the request using
information from the
|
|
Returns the
|
|
Returns
|
In an
HttpRequest
object, the
GET
and
POST
attributes are
instances of
django.http.QueryDict
.
QueryDict
is a dictionary-like
class customized to deal with multiple values for the same key. This is
necessary because some HTML form elements, notably
<select
multiple="multiple">
, pass multiple values for the same key.
QueryDict
instances are immutable, unless you create a
copy()
of them.
That means you can’t change attributes of
request.POST
and
request.GET
directly.
QueryDict
implements the all standard dictionary methods, because it’s a
subclass of dictionary. Exceptions are outlined in Table G-3.
Method |
Differences from Standard dict Implementation |
---|---|
|
Works just like a dictionary. However, if the key
has more than one value,
|
|
Sets the given key to
|
|
If the key has more than one value,
|
|
Takes either a
>>> q = QueryDict('a=1')
>>> q = q.copy() # to make it mutable
>>> q.update({'a': '2'})
>>> q.getlist('a')
['1', '2']
>>> q['a'] # returns the last
['2']
|
|
Just like the standard dictionary
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.items()
[('a', '3')]
|
|
Just like the standard dictionary
|
In addition,
QueryDict
has the methods shown in Table G-4.
Method |
Description |
---|---|
|
Returns a copy of the object, using
|
|
Returns the data with the requested key, as a Python list. Returns an empty list if the key doesn’t exist. It’s guaranteed to return a list of some sort. |
|
Sets the given key to
|
|
Appends an item to the internal list associated
with
|
|
Just like
|
|
Like
>>> q = QueryDict('a=1&a=2&a=3')
>>> q.lists()
[('a', ['1', '2', '3'])]
|
|
Returns a string of the data in query-string
format (e.g.,
|
For example, given this HTML form:
<form action="/foo/bar/" method="post">
<input type="text" name="your_name" />
<select multiple="multiple" name="bands">
<option value="beatles">The Beatles</option>
<option value="who">The Who</option>
<option value="zombies">The Zombies</option>
</select>
<input type="submit" />
</form>
if the user enters
"John
Smith"
in the
your_name
field and selects
both “The Beatles” and “The Zombies” in the multiple select box, here’s what
Django’s request object would have:
>>> request.GET
{}
>>> request.POST
{'your_name': ['John Smith'], 'bands': ['beatles', 'zombies']}
>>> request.POST['your_name']
'John Smith'
>>> request.POST['bands']
'zombies'
>>> request.POST.getlist('bands')
['beatles', 'zombies']
>>> request.POST.get('your_name', 'Adrian')
'John Smith'
>>> request.POST.get('nonexistent_field', 'Nowhere Man')
'Nowhere Man'
Implementation Note:
The
GET
,
POST
,
COOKIES
,
FILES
,
META
,
REQUEST
,
raw_post_data
, and
user
attributes are all lazily loaded. That means
Django doesn’t spend resources calculating the values of those attributes until
your code requests them.
In contrast to
HttpRequest
objects, which are created automatically by
Django,
HttpResponse
objects are your responsibility. Each view you write
is responsible for instantiating, populating, and returning an
HttpResponse
.
The
HttpResponse
class lives at
django.http.HttpResponse
.
Typically, you’ll construct an
HttpResponse
to pass the contents of the
page, as a string, to the
HttpResponse
constructor:
>>> response = HttpResponse("Here's the text of the Web page.")
>>> response = HttpResponse("Text only, please.", mimetype="text/plain")
But if you want to add content incrementally, you can use
response
as a
filelike object:
>>> response = HttpResponse()
>>> response.write("<p>Here's the text of the Web page.</p>")
>>> response.write("<p>Here's another paragraph.</p>")
You can pass
HttpResponse
an iterator rather than passing it
hard-coded strings. If you use this technique, follow these guidelines:
The iterator should return strings.
If an
HttpResponse
has been initialized with an iterator as its
content, you can’t use the
HttpResponse
instance as a filelike
object. Doing so will raise
Exception
.
Finally, note that
HttpResponse
implements a
write()
method, which
makes is suitable for use anywhere that Python expects a filelike object. See
Chapter 8 for some examples of using this technique.
You can add and delete headers using dictionary syntax:
>>> response = HttpResponse()
>>> response['X-DJANGO'] = "It's the best."
>>> del response['X-PHP']
>>> response['X-DJANGO']
"It's the best."
You can also use
has_header(header)
to check for the existence of a header.
Avoid setting
Cookie
headers by hand; instead, see Chapter 14 for
instructions on how cookies work in Django.
Django includes a number of
HttpResponse
subclasses that handle different
types of HTTP responses (see Table G-5). Like
HttpResponse
, these subclasses live in
django.http
.
Class |
Description |
---|---|
|
The constructor takes a single argument:
the path to redirect to. This can
be a fully qualified URL (e.g.,
|
|
Like
|
|
The constructor doesn’t take any arguments. Use this to designate that a page hasn’t been modified since the user’s last request. |
|
Acts just like
|
|
Acts just like
|
|
Acts just like
|
|
Like
|
|
Acts just like
|
|
Acts just like
|
You can, of course, define your own
HttpResponse
subclass to support
different types of responses not supported out of the box.
Returning HTTP error codes in Django is easy. We’ve already mentioned the
HttpResponseNotFound
,
HttpResponseForbidden
,
HttpResponseServerError
, and other subclasses. Just return an instance of one
of those subclasses instead of a normal
HttpResponse
in order to signify
an error, for example:
def my_view(request):
# ...
if foo:
return HttpResponseNotFound('<h1>Page not found</h1>')
else:
return HttpResponse('<h1>Page was found</h1>')
Because a 404 error is by far the most common HTTP error, there’s an easier way to handle it.
When you return an error such as
HttpResponseNotFound
, you’re responsible
for defining the HTML of the resulting error page:
return HttpResponseNotFound('<h1>Page not found</h1>')
For convenience, and because it’s a good idea to have a consistent 404 error page
across your site, Django provides an
Http404
exception. If you raise
Http404
at any point in a view function, Django will catch it and return the
standard error page for your application, along with an HTTP error code 404.
Here’s an example:
from django.http import Http404
def detail(request, poll_id):
try:
p = Poll.objects.get(pk=poll_id)
except Poll.DoesNotExist:
raise Http404
return render(request, 'polls/detail.html', {'poll': p})
In order to use the
Http404
exception to its fullest, you should create a
template that is displayed when a 404 error is raised. This template should be
called
404.html
, and it should be located in the top level of your template tree.
When you raise an
Http404
exception, Django loads a special view devoted
to handling 404 errors. By default, it’s the view
django.views.defaults.page_not_found
, which loads and renders the template
404.html
.
This means you need to define a
404.html
template in your root template
directory. This template will be used for all 404 errors.
This
page_not_found
view should suffice for 99% of Web applications, but
if you want to override the 404 view, you can specify
handler404
in your
URLconf, like so:
from django.conf.urls.defaults import *
urlpatterns = patterns('',
...
)
handler404 = 'mysite.views.my_custom_404_view'
Behind the scenes, Django determines the 404 view by looking for
handler404
. By default, URLconfs contain the following line:
from django.conf.urls.defaults import *
That takes care of setting
handler404
in the current module. As you can
see in
django/conf/urls/defaults.py
,
handler404
is set to
'django.views.defaults.page_not_found'
by default.
There are three things to note about 404 views:
The 404 view is also called if Django doesn’t find a match after checking every regular expression in the URLconf.
If you don’t define your own 404 view – and simply use the default,
which is recommended – you still have one obligation: to create a
404.html
template in the root of your template directory. The default
404 view will use that template for all 404 errors.
If
DEBUG
is set to
True
(in your settings module), then your 404
view will never be used, and the traceback will be displayed instead.
Similarly, Django executes special-case behavior in the case of runtime errors
in view code. If a view results in an exception, Django will, by default, call
the view
django.views.defaults.server_error
, which loads and renders the
template
500.html
.
This means you need to define a
500.html
template in your root template
directory. This template will be used for all server errors.
This
server_error
view should suffice for 99% of Web applications, but if
you want to override the view, you can specify
handler500
in your
URLconf, like so:
from django.conf.urls.defaults import *
urlpatterns = patterns('',
...
)
handler500 = 'mysite.views.my_custom_error_view'